| Name: | Block: | Date: | | |---|--------|-------|--| | Calculate the values to the percent tenth | | | | | 1. 8, 8, 4 | , 8, and 8 | | | | | | | |--|------------------------|--|-------------------|--|-------------------------|--|--| | | | *** * 4 | | *** 1. | | | | | | nedian: | Write the n | nean: | Write | e the mode: | | | | 2. 8, 8, 8, | , 8, and 12 | | | | | | | | Write the m | nedian: | Write the n | nean: | Write | e the mode: | | | | | 16, 7, and 13 | 47-2-4-32-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | | The contract of o | | | | | Write the m | nedian: | Write the n | nean: | Write the mode: | | | | | | , 22, 22, and 22 | | | | | | | | Write the m | iedian: | Write the n | nean: | Write the mode: | | | | | 2 | the following annual | | | | | | | | 20.61 | 37.34 | 23.6 | 20.58 | 6.96 | 22.27 | | | | 18.68 | 0.72 | 22.27 | 18.68 | 55.57 | | | | | 53.33 | 3 23.4 | 5.84 | 18.22 | 18.68 | 18.68 | | | | | 6.96 | | | | | | | | | 7 19.36 | | | | | | | | MANAGE STATE OF THE TH | | | | | | | | | Write the m | edian: | Write the n | nean: | Write the mode: | | | | | 6. Studer | nts with the following | GPAs applied f | for a job: 3.7, 3 | .1, 3.9, 3.7, 3.7, | 2, 3, 3.4, 3.2, and 2.3 | | | | Write the m | iedian: | Write the n | Write the mean: | | Write the mode: | | | | 7. The fo | ollowing temperatures | were recorded: | 85, 3, 33, -6, 6 | 5, -1, 44, -6, -4, | and 68 | | | | Write the m | adian: | Write the n | | Write the made | | | | ## Calculate the values to the nearest tenth. - 1. 49, 51, 15, 7, 51, 18, and 96. Write the range: - 2. 48, 99, 43, 30, 10, 66, and 66. Write the range: - 3. -8.3, 6.5, -4.5, -9.1, -0.9, 11, -12.1, -12.3, -8.3, and -21.3. Write the range: - 4. 19.7, 19.7, -2.7, 10.8, -36.6, -20.4, 14, 19.7, 29.4, and -0.6. Write the range: | 5. | Given the follo | owing annual i | nutual fu nd retu | rns: | | | ì | |----|--------------------------------|--|--|--------------------|--------------------|----------------------------|------------------------| | | 17.89 | 3.9 | 22.8 8 | -44.71 | 61.89 | 5.44 | | | | 66.62 | 0.57 | 14.89 | 13.43 | 7.67 | 4.2 | | | | 59.59 | 13.33 | 19.92 | -46.43 | -44.41 | 9.77 | | | | -42.21 | 15.16 | 12.17 | -42.56 | 9.17 | 5.46 | | | | -43.36 | 13.68 | -45.89 | 11.56 | 39 | 36.84 | | | | Write the rang | ge: | Write the | variance: | Write the | standard
eviation: | | | 6. | 82.45, 96.33, | 66.75, 135.5, 8 | 38.12, 123.62, 76
14, 132.18, 74.12 | | .02, 80.7, 78.03, | 101.61, 71.39, | | | | Write the ran | ge: | Write the | variance: | | standard
leviation: ——— | · · · | | 7. | \$11,200 \$1 | owing prices of 4,700 5,000 3,100 | of used cars: | | | | | | | Write the rang | Timbrilli (1995) - in the commence of comm | Write the | variance: | Write the | standard
eviation: | and model or the state | | 8. | Given the foll 30.9, -8.8, 17. | | 27.4, -4.5, 66.3, | 26.4, and 12. | | | | | | Write the ran | ge: | Write the | variance: | | standard
leviation: | | | 9. | | | | 00, 100, 84, 99, 8 | 5, 62, 85, 100, 69 |), 100, and 96. | | | | Write the ran | ge: | Write the | variance: | Write the | standard
eviation: ——— | ····· | Complete the following z score problems using table 4. 1. Find the area between the mean and the z scores. Illustrate with a bell curve and show your work. a. $$z = 1.17$$ b. $$z = 2.07$$ c. $$z = -0.85$$ $$d. z = -1.37$$ 2. Find the percent of samples that will fall below the given z score. (percentile rank) a. $$z = 2.24$$ b. $$z = 1.47$$ c. $$z = -1.65$$ $$d. z = -0.47$$ 3. Find the percent of samples that fall above the z score. a. $$z = 0.24$$ b. $$z = 1.22$$ c. $$z = -1.11$$ $$d. z = -2.07$$ 4. A test was administered the tabulated results showed a mean of 100 and a standard deviation of 15. If the z score was 1.20, what was the % score on the test? 5. If the average IQ in the U.S. is 100, with a standard deviation of 15, what percentage of the population has an IQ less than 85%? 6. Based on the information given in problem 5, what percentage of the population has IQ's between 90 - 120? 7. If an asprin tablet is expected to contain an average of 250 mg of acetylsalicylic acid (ASA) what percentage of the population lies between 243 mg and 262 mg if the standard deviation is 5? 8. Given the data below calculate the percent above 100 for a normal Gaussian distribution. 9. A chemical company evaluates the product being made by testing 8 random samples to determine the quantity of substance X that is contained. The results of the testing are listed below, determine the mean, standard deviation and the percent of the population that is expected to fall within the acceptable range of 100% ±15. Table 4 — Standard Normal Distribution | Z | .09 | .08 | .07 | .06 | .05 | .04 | .03 | .02 | .01 | .00 | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | -3.4 | .0002 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | | -3.3 | .0003 | .0004 | .0004 | .0004 | .0004 | .0004 | .0004 | .0005 | .0005 | .0005 | | -3.2 | .0005 | .0005 | .0005 | .0006 | .0006 | .0006 | .0006 | .0006 | .0007 | .0007 | | -3.1 | .0007 | .0007 | .0008 | .0008 | .0008 | .0008 | .0009 | .0009 | .0009 | .0010 | | -3.0 | .0010 | .0010 | .0011 | .0011 | .0011 | .0012 | .0012 | .0013 | .0013 | .0013 | | 2.9 | .0014 | .0014 | .0015 | .0015 | .0016 | .0016 | .0017 | .0018 | .0018 | .0019 | | - 2.8 | .0019 | .0020 | .0021 | .0021 | .0022 | .0023 | .0023 | .0024 | .0025 | .0026 | | -2.7 | .0026 | .0027 | .0028 | .0029 | .0030 | .0031 | .0032 | .0033 | .0034 | .0035 | | - 2.6 | .0036 | .0037 | .0038 | .0039 | .0040 | .0041 | .0043 | .0044 | .0045 | .0047 | | -2.5 | .0048 | .0049 | .0051 | .0052 | .0054 | .0055 | .0057 | .0059 | .0060 | .0062 | | -2.4 | .0064 | .0066 | .0068 | .0069 | .0071 | .0073 | .0075 | .0078 | .0080 | .0082 | | -2.3 | .0084 | .0087 | .0089 | .0091 | .0094 | .0096 | .0099 | .0102 | .0104 | .0107 | | - 2.2 | .0110 | .0113 | .0116 | .0119 | .0122 | .0125 | .0129 | .0132 | .0136 | .0139 | | -2.1 | .0143 | .0146 | .0150 | .0154 | .0158 | .0162 | .0166 | .0170 | .0174 | .0179 | | - 2.0 | .0183 | .0188 | .0192 | .0197 | .0202 | .0207 | .0212 | .0217 | .0222 | .0228 | | -1.9 | .0233 | .0239 | .0244 | .0250 | .0256 | .0262 | .0268 | .0274 | .0281 | .0287 | | - 1.8 | .0294 | .0301 | .0307 | .0314 | .0322 | .0329 | .0336 | .0344 | .0351 | .0359 | | -1,7 | .0367 | .0375 | .0384 | .0392 | .0401 | .0409 | .0418 | .0427 | .0436 | .0446 | | -1.6 | .0455 | .0465 | .0475 | .0485 | .0495 | .0505 | .0516 | .0526 | .0537 | .0548 | | -1,5 | .0559 | .0571 | .0582 | .0594 | .0606 | .0618 | .0630 | .0643 | .0655 | .0668 | | -1.4 | .0681 | .0694 | .0708 | .0721 | .0735 | .0749 | .0764 | .0778 | .0793 | .0808 | | -1.3 | .0823 | .0838 | .0853 | .0869 | .0885 | .0901 | .0918 | .0934 | .0951 | .0968 | | - 1.2 | .0985 | .1003 | .1020 | .1038 | .1056 | .1075 | .1093 | .1112 | .1131 | .1151 | | -1.1 | .1170 | .1190 | .1210 | .1230 | .1251 | .1271 | .1292 | .1314 | .1335 | .1357 | | - 1.0 | .1379 | .1401 | .1423 | .1446 | .1469 | .1492 | .1515 | .1539 | .1562 | .1587 | | -0.9 | .1611 | 1635 | 1660 | .1685 | .1711 | .1736 | .1762 | .1788 | .1814 | .1841 | | - 0.8 | .1867 | .1894 | .1922 | .1949 | .1977 | .2005 | .2033 | .2061 | .2090 | .2119 | | -0.7 | .2148 | .2177 | .2206 | .2236 | .2266 | .2296 | .2327 | .2358 | .2389 | .2420 | | -0.6 | .2451 | .2483 | .2514 | .2546 | .2578 | .2611 | .2643 | .2676 | .2709 | .2743 | | -0.5 | 2776 | .2810 | .2843 | .2877 | .2912 | .2946 | .2981 | .3015 | .3050 | .3085 | | -0.4 | .3121 | .3156 | .3192 | .3228 | .3264 | .3300 | .3336 | .3372 | .3409 | .3446 | | -0.3 | .3483 | .3520 | .3557 | .3594 | .3632 | .3669 | .3707 | .3745 | .3783 | .3821 | | -0.2 | .3859 | .3897 | .3936 | .3974 | .4013 | .4052 | .4090 | .4129 | .4168 | .4207 | | -0.1 | .4247 | .4286 | .4325 | .4364 | .4404 | .4443 | .4483 | .4522 | .4562 | .4602 | | -0.0 | .4641 | .4681 | .4721 | .4761 | .4801 | .4840 | .4880 | .4920 | .4960 | .5000 | ## **Critical Values** | Level of Confidence c | Zc | |-----------------------|-------| | 0.80 | 1.28 | | 0.90 | 1.645 | | 0.95 | 1.96 | | 0.99 | 2.575 | Table 4 — Standard Normal Distribution (continued) | z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |------|-------|-------|-------|-------|----------------|---------------|---------------|-------|-------|-------| | 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .523 9 | .5279 | .5319 | .5359 | | 0.7 | .5398 | .5438 | .5478 | .5517 | .55 5 7 | .5596 | .563 6 | .5675 | .5714 | .5753 | | 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5 987 | .6026 | .6064 | .6103 | .6141 | | 0.3 | .6179 | ,6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 | | 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 | | 0.5 | .6915 | | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 | | 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 | | 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 | | 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 | | 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 | | 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 | | 1.12 | .8643 | .8665 | .8686 | .8708 | 8729 | .8749 | .8770 | .8790 | .8810 | .8830 | | 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 | | 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 | | 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 | | 1.5 | 9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 | | 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 | | 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 | | 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 | | 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 | | 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 | | 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 | | 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 | | 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 | | 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | 9931 | .9932 | .9934 | .9936 | | 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 | | 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 | | 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 | | 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9 979 | .9979 | .9980 | .9981 | | 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 | | 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 | | 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 | | 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 | | 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 | | 3.4 | .9997 | 9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 | Table 5— t-Distribution | | Level of | | | | | | | |------|---|-------|-------|-------|---------------|--------|--------| | | confidence, c | 0.50 | 0.80 | 0.90 | 0.95 | 0.98 | 0.99 | | | One tail, α | 0.25 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | | d.f. | Two tails, α | 0.50 | 0.20 | 0.10 | 0.05 | 0.02 | 0.01 | | 1 | | 1.000 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | | 2 | | .816 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | | 3 | 2,7,00 | .765 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | | 4 | | .741 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | | 5 | | .727 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | | 6 | | .718 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | | 7 | e single ke te day te | .711 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | | 8 | | 706 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | | 9 | % C. (100 € 19 (100 (100) 100) 100 1 | .703 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | | 10- | | .700 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | | 11 | ., ., ., ., ., ., ., . | .697 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | | 12 | | .695 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | | 13 | 7 | .694 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | | 14 | | .692 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | | 15 | | .691 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | | 16 | BERLEAD NO. | .690 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | | 17 | CALL ST. ST. SEC. SEC. ST. ST. ST. ST. ST. ST. ST. ST. ST. ST | .689 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | | 18 | EASTERNAL DE | .688 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | | 19 | | .688 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | | 20 | | .687 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | | 21 | | .686 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | | 22 | 3.4 | .686 | 1.321 | 1,717 | 2.074 | 2.508 | 2.819 | | 23 | | .685 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | | 24 | My St. Helenicht | .685 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | | 25 | | .684 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | | 26 | | .684 | 1.315 | 1.706 | 2.05 6 | 2.479 | 2.779 | | 27 | | .684 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | | 28 | New York, Service | .683 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | | 29 | , , , , , , , , , , , , , , , , , , , | .683 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | | 00 | Cotton Constitution of | .674 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | Table 6— Chi-Square Distribution | Degrees of | α | | | | | | | | | | | |------------|---------------|--------|--------|---------------|--------|-----------------|---------|---------|----------------|---------|--| | freedom | 0.995 | 0.99 | 0.975 | 0.95 | 0.90 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | | | 1 | | | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | | | 2 | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 | | | 3 | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 | | | 4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 | | | 5 | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.071 | 12.833 | 15.086 | 16.750 | | | 6 | 0.676 | 0.872 | 1.237 | 1.635 | 2.204 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 | | | 7 | 0.9 89 | 1.239 | 1.690 | 2.167 | 2.833 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 | | | 8 | 1,344 | 1.646 | 2.180 | 2.733 | 3.490 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 | | | 9 | 1.735 | 2.088 | 2.700 | 3.325 | 4.168 | 14.684 | 16.919 | 19.023 | 21.666 | 23.589 | | | 10 | 2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 | | | 11 | 2.603 | 3.053 | 3.816 | 4.575 | 5.578 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757 | | | 12 | 3.074 | 3.571 | 4.404 | 5.22 6 | 6.304 | 18.549 | 21.026 | 23.337 | 26.217 | 28.299 | | | 13 | 3.56 5 | 4.107 | 5.009 | 5.892 | 7.042 | 19.812 | 22.362 | 24.736 | 27.68 8 | 29.819 | | | 14 | 4.075 | 4.660 | 5.629 | 6.571 | 7.790 | 21.064 | 23.685 | 26.119 | 29.141 | 31.319 | | | 15 | 4.601 | 5.229 | 6.262 | 7.261 | 8.547 | 22.307 | 24.996 | 27.488 | 30.578 | 32.801 | | | 16 | 5.142 | 5.812 | 6.908 | 7.962 | 9.312 | 23.542 | 26.296 | 28.845 | 32.000 | 34.267 | | | 17 | 5. 697 | 6.408 | 7.564 | 8.672 | 10.085 | 24.769 | 27.587 | 30.191 | 33.409 | 35.718 | | | 18 | 6.265 | 7.015 | 8.231 | 9.390 | 10.865 | 25.989 | 28.869 | 31.526 | 34.805 | 37.156 | | | 19 | 6.844 | 7.633 | 8.907 | 10.117 | 11.651 | 27.204 | 30.144 | 32.852 | 36.191 | 38.582 | | | 20 | 7.434 | 8.260 | 9.591 | 10.851 | 12.443 | 28.412 | 31.410 | 34.170 | 37.566 | 39.997 | | | 21 | 8.034 | 8.897 | 10.283 | 11.591 | 13.240 | 29.615 | 32.671 | 35.479 | 38.932 | 41.401 | | | 22 | 8.643 | 9.542 | 10.982 | 12.338 | 14.042 | 30.813 | 33.924 | 36.781 | 40.289 | 42.796 | | | 23 | 9.260 | 10.196 | 11.689 | 13.091 | 14.848 | 32.007 | 35.172 | 38.076 | 41.638 | 44.181 | | | 24 | 9.886 | 10.856 | 12.401 | 13.848 | 15.659 | 33.196 | 36,415 | 39.364 | 42.980 | 45.559 | | | 25 | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382 | 37.652 | 40.646 | 44.314 | 46.928 | | | 26 | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 35.563 | 38.885 | 41.923 | 45.642 | 48.290 | | | 27 | 11.808 | 12.879 | 14.573 | 16.151 | 18.114 | 36.741 | 40.113 | 43.194 | 46.963 | 49.645 | | | 28 | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 37.916 | 41.337 | 44.461 | 48.278 | 50.993 | | | 29 | 13.121 | 14.257 | 16.047 | 17.708 | 19.768 | 39.087 | 42.557 | 45.722 | 49.588 | 52.336 | | | 30 | 13.787 | 14.954 | 16.791 | 18.493 | 20.599 | 40.256 | 43.773 | 46.979 | 50.892 | 53.672 | | | 40 | 20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 51.805 | 55.758 | 59.342 | 63.691 | 66.766 | | | 50 | 27.991 | 29.707 | 32.357 | 34.764 | 37.689 | 63.167 | 67.505 | 71.420 | 76.154 | 79.490 | | | 60 | 35.534 | 37.485 | 40.482 | 43.188 | 46.459 | 74.397 | 79.082 | 83.298 | 88.379 | 91.952 | | | 70 | 43.275 | 45.442 | 48.758 | 51.739 | 55.329 | 85.527 | 90.531 | 95.023 | 100.425 | 104.215 | | | 80 | 51.172 | 53.540 | 57.153 | 60.391 | 64.278 | 96.578 | 101.879 | 106.629 | 112.329 | 116.321 | | | 90 | 59.196 | 61.754 | 65.647 | 69.126 | 73.291 | 107.5 65 | 113.145 | 118.136 | 124.116 | 128.299 | | | 100 | 67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 | |