Name: \qquad Pd: \qquad Date: \qquad
SOL Review Packet

*****REMEMBER REVIEW IS TO HELP YOU LEARN WHAT ITEMS YOU HAVE TROUBLE WITH - DO NOT SKIP THE PROBLEMS YOU DO NOT UNDERSTAND, ASK FOR HELP!!!!!

Provide the answers to the following questions.

1. How many meters are in 1.5 kilometers? \qquad 1500 m \qquad
2. How many grams are in 20 kilograms? \qquad
\qquad
3. How many milliliters are in 3.7 liters? __ 3700 ml \qquad
4. How many milligrams are in 6.8 grams? _6800g \qquad
Write the following numbers in scientific notation.
5. 14,729 \qquad 1.4729×10^{4} \qquad
6. $369 — 3.69 \times 10^{2}$ \qquad
7. $0.0059 ~ _~ 5.9 \times 10^{-3}$ \qquad
Give the number of significant figures in the following numbers.
8. $26,400 \ldots 3$
_3
9. 0.0140 \qquad 3
10. Round off 26,060 to three significant figures. \qquad 26100 \qquad
11. Solve and express your answer in scientific notation. _1.0 $\times 10^{11}$ \qquad

$$
\frac{625 \times 5200}{0.0013 \times 0.025}
$$

12. A group measures a quantity and the result is 25.9 . The actual value is 25.6 . What is the percent error in the measurement?

$$
\frac{|25.9-25.6|}{25.6} \times 100=1.17 \% \text { error }
$$

13. Find the density in $\mathrm{g} / \mathrm{cm}^{3}$ of a rectangular piece of granite which is 2.00 cm x $2.0 \mathrm{~cm} \times 9.00 \mathrm{~cm}$ and has a mass of 108 g .

$$
\mathrm{D}=\frac{108 \mathrm{~g}}{(2.00 \mathrm{~cm} \times 2.0 \mathrm{~cm} \times 9.00 \mathrm{~cm})}=3.0 \mathrm{~g} / \mathrm{cm}^{3}
$$

14. What amount of heat (in joules) would be produced by raising the temperature of 152 grams of water by $9^{\circ} \mathrm{C}$?
Heat $=(152 \mathrm{~g})\left(9^{\circ} \mathrm{C}\right)\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)=6000$ Joules
15. Find the percent composition of iron and oxygen in ferric oxide.
$\mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{Fe}(2 \times 55.85)+\mathrm{O}(3 \times 16.00)=159.70 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Fe}=111.70 / 159.70 \times 100=69.94 \% \quad \mathrm{O}=48.00 / 159.70 \times 100=30.06 \%$

Complete the table below.

	Element	Atomic Number	Mass Number	Protons	Electrons	Neutrons
16.	Al	13	27	13	13	14
17.	Be	4	9	4	4	5
18.	Bi	83	209	83	83	126
19.	Ca	20	40	20	20	20
20.	C	6	13	6	6	7
21.	F	9	21	9	9	12
22.	P^{-3}	15	31	15	18	16
23.	Mg^{2+}	12	24	12	10	12

Fill-in the blanks on the following table.

	Energy Level	Sublevel	Number of Orbitals	Maximum Number of Electrons
24.	1	S	1	2
25.	2	$\mathrm{~s}, \mathrm{p}$	4	8
26.	3	$\mathrm{~s}, \mathrm{p}, \mathrm{d}$	9	18
27.	4	$\mathrm{~s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$	16	32

28. What elements are present in SF_{6} ? \qquad sulfur_ and _fluorine \qquad
29. How many atoms are in the formula above? __7 \qquad
Write the formulas for the following.
30. sodium chloride __ NaCl \qquad 37. sodium nitrate _ NaNO_{3} \qquad
31. sodium sulfide _ $\mathrm{Na}_{2} \mathrm{~S}$ \qquad 38. sodium carbonate __ NaCO_{3}
32. sodium phosphate _ $\mathrm{Na}_{3} \mathrm{PO}_{4}$ \qquad

Name the following compounds.
33. KClO_{3} _potassium chlorate \qquad
34. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ _copper (II) nitrate \qquad (Cupric) \qquad
35. KOH _potassium hydroxide \qquad
36. $\mathrm{HBr}(\mathrm{aq})$ _hydrobromic acid \qquad
37. Calculate the empirical and molecular formula for the following compound. skip
38. Complete the following reaction:
$2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow{ }_{-} 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ \qquad
39. How many atoms enter the reaction? 18 How many atoms leave the reaction? 18
40. How many molecules of carbon dioxide produced? \qquad 4 \qquad
41. How many atoms of oxygen gas are consumed? _10 \qquad
For questions 42-45 complete the word problem by predicting the product, write the balanced equation and identify the type of reaction.
42. Ammonia when heated produces \qquad nitrogen gas and hydrogen gas \qquad
Type of reaction: \qquad decomp \qquad
Equation:
$2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
43. Carbon reacts with ferric oxide produces _carbon dioxide and iron \qquad
Type of reaction: __single replacement \qquad
Equation:
$3 \mathrm{C}+2 \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{Fe}$
44. Chlorine gas and potassium bromide react to form potassium chloride and bromine gas
Type of reaction: _single replacement \qquad
Equation:
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KBr} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}(\mathrm{~g})$
45. Silver nitrate and sodium chloride react to form silver chloride and sodium nitrate

Type of reaction: __double replacement \qquad
Equation:
$\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
Find the mass in one mole of:
46. $\mathrm{Hg}_{2}\left(\mathrm{SO}_{3}\right) \quad 481,25 \mathrm{~g} / \mathrm{mol}$
47. $\mathrm{Al}_{2} \mathrm{O}_{3} 101.96 \mathrm{~g} / \mathrm{mol}$
48. $\mathrm{Ca}\left(\mathrm{MnO}_{4}\right)_{2} 277.96 \mathrm{~g} / \mathrm{mol}$

How many moles are in the following:
49. 98 g of $\mathrm{H}_{2} \mathrm{SO}_{4} 1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
50. 7 g of $\mathrm{N}_{2} 0.2 \mathrm{~mol} \mathrm{~N}$
51. 0.051 g of $\mathrm{NH}_{3} \quad 0.0030 \mathrm{~mol} \mathrm{NH}_{3}$

Find the volumes of the following:
52. 1 mole of oxygen gas $22.4 \mathrm{~L} \mathrm{O}_{2}$
53. 3.5 moles water $78.4 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
54. 10.0 moles of nitrogen gas $224 \mathrm{~L} \mathrm{~N}_{2}$

Consider the following equation:
$2 \mathrm{Ca}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}$
55. How many moles of CaO would be produced by 3 moles of Ca ?
$3 \mathrm{~mol} \mathrm{Cax} \frac{2 \mathrm{~mol} \mathrm{CaO}}{2 \mathrm{~mol} \mathrm{Ca}}=3 \mathrm{~mol} \mathrm{CaO}$
56. How many grams of CaO would be produced by 54.3 grams of oxygen gas?
$54.3 \mathrm{~g} \mathrm{O}_{2} \times 1 \mathrm{~mol} \mathrm{O}_{2} \mathrm{x} 2 \mathrm{~mol} \mathrm{CaO} \times 56.08 \mathrm{~g} \mathrm{CaO}=190 . \mathrm{g} \mathrm{CaO}$ $32.00 \mathrm{~g} \mathrm{O}_{2} \quad 1 \mathrm{~mol} \mathrm{O}_{2} \quad 1 \mathrm{~mol} \mathrm{CaO}$
57. How many liters of oxygen gas would be needed to produce 23.7 grams of CaO ? $23.7 \mathrm{~g} \mathrm{CaO} \times \underline{1 \mathrm{~mol} \mathrm{CaO}} \times \underline{1 \mathrm{~mol} \mathrm{O}_{2}} \times \underline{22.4 \mathrm{~L} \mathrm{O}_{2}}=4.73 \mathrm{~L} \mathrm{O}_{2}$ $56.08 \mathrm{~g} \mathrm{CaO} 2 \mathrm{~mol} \mathrm{CaO} 1 \mathrm{~mol} \mathrm{O}_{2}$

Consider the following equation:
$\mathrm{Zn}+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}$
58. How many grams of Zn are needed to produce 11.2 L of hydrogen gas?
$11.2 \mathrm{~L} \mathrm{H}_{2} \times \underline{1 \mathrm{~mol} \mathrm{H}_{2}} \times \underline{1 \mathrm{~mol} \mathrm{Zn}} \times \underline{65.39 \mathrm{~g} \mathrm{Zn}}=32.7 \mathrm{~g} \mathrm{Zn}$ $2.02 \mathrm{~g} \mathrm{H}_{2} \quad 1 \mathrm{~mol} \mathrm{H}_{2} \quad 1 \mathrm{~mol} \mathrm{Zn}$

Complete the following word problems.
59. A gas at STP occupies 4L, if the pressure was lowered to 560 mmHg what would the new volume be?

$$
(4 \mathrm{~L})(760 \mathrm{mmHg})=\left(\mathrm{V}_{2}\right)(560 \mathrm{mmHg}) \quad \mathrm{V}_{2}=5 \mathrm{~L}
$$

60. The pressure exerted by a confined gas at 250 K is 600 mmHg . What pressure would be exerted at 750 K ?

$$
\frac{600 \mathrm{mmHg}}{250 \mathrm{~K}}=\frac{\mathrm{P}_{2}}{750 \mathrm{~K}} \quad \mathrm{P}_{2}=2000 \mathrm{mmHg}
$$

61. A gas at 4 atm and 350 K occupies a volume of $52.3 \mathrm{~cm}^{3}$, what is the new volume if we bring everything to STP?
$\frac{\left(52.3 \mathrm{~cm}^{3}\right)(4 \mathrm{~atm})}{350 \mathrm{~K}}=\frac{\mathrm{V}_{2}(1 \mathrm{~atm})}{273 \mathrm{~K}} \quad \mathrm{~V}_{2}=200 \mathrm{~cm}^{3}$
62. How many grams of oxygen gas are present if it occupies 2.62 L at $285^{\circ} \mathrm{C}$ and 3.42 atm ?
$(3.42 \mathrm{~atm})(2.62 \mathrm{~L})=\mathrm{n}(0.0821 \mathrm{Latm} / \mathrm{molK})(558 \mathrm{~K}) \quad \mathrm{n}=0.196 \mathrm{~mol} \rightarrow 6.26 \mathrm{~g} \mathrm{O}{ }_{2}$
63. We need to inflate a ballon to a volume of 1.250 L with 0.2494 g of helium, if the pressure is 1.26 atm what temperature do we need (in ${ }^{\circ} \mathrm{C}$)?
$(1.26 \mathrm{~atm})(1.250 \mathrm{~L})=(0.06235 \mathrm{~mol})(0.0821 \mathrm{Latm} / \mathrm{molK})(\mathrm{T}) \quad \mathrm{T}=34.7^{\circ} \mathrm{C}$
64. What is the molarity of a glucose solution if the is 0.20 mol of glucose dissolved in 750 ml of water?
$\mathrm{M}=\frac{0.20 \mathrm{~mol}}{0.750 \mathrm{~L}}=0.27 \mathrm{M}$
65. What is the molarity of hydrochloric acid if there are 25.3 g of HCl dissolved in 5.00 L of water?
$\mathrm{M}=\underline{0.6939 \mathrm{~mol}}=0.139 \mathrm{M}$ 5.00 L
66. What is the molality of a solution that is composed of 60.4 g of potassium permanganate in 1200 g of water?
$\mathrm{m}=\frac{0.382 \mathrm{~mol}}{1.2 \mathrm{~kg}}=0.32 \mathrm{~m}$
67. What is the molality of a solution if there is 1.68 mol of KOH dissolved in 3.00 kg of water?
$\mathrm{m}=\frac{1.68 \mathrm{~mol}}{3.00 \mathrm{~kg}}=0.560 \mathrm{~m}$
Consider the following equation:
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
68. Identify the two conjugate pairs.

Pair 1: acid-_ HNO_{3} \qquad and base-_ $\mathrm{NO}_{3}{ }^{-}$ \qquad
Pair 2: acid- \qquad $\mathrm{H}_{3} \mathrm{O}^{+}$ \qquad and base-_ $\mathrm{H}_{2} \mathrm{O}$ \qquad
69. Which of the acids above fit the Arrhenius definition of an acid? _ HNO_{3}
70. Calculate the hydroxide ion concentration of a solution whose hydronium ion concentration is 0.0010 M .
$\mathrm{H}_{3} \mathrm{O}^{+}=1.0 \times 10^{-3} \mathrm{M} \quad \mathrm{OH}^{-}=1.0 \times 10^{-11} \mathrm{M}$
71. What is the pH of a solution if the concentration of hydronium ions is
$1.0 \times 10^{-2} \mathrm{M}$? Is the solution acidic or basic? $\mathrm{pH}=2$ acidic
72. What is the pH of a solution if the hydroxide ion concentration is $1.0 \times 10^{8} \mathrm{M}$? Is the solution acidic or basic?
$\mathrm{H}_{3} \mathrm{O}^{+}=1.0 \times 10^{-6} \mathrm{M} \quad \mathrm{pH}=6$ acidic
For the following questions use your knowledge of the periodic table.
73. Which of the following have the strongest metallic characteristics?
a. francium
b. fluorine
c. magnesium
d. hydrogen
74. Which of the following has the highest ionization energy?
a. calcium
b. neon
c. carbon
d. oxygen
75. Which of the following will have the strongest ionic bonds?
a. F_{2}
b. NaCl
c. $\mathrm{H}_{2} \mathrm{O}$
d. CH_{4}
76. Which of the following will create a non-polar covalent bond?
a. O_{2}
b. CaF_{2}
c. $\mathrm{H}_{2} \mathrm{O}$
d. NH_{3}
77. Which of the following will have the smallest atomic radius?
a. Na
b. Cu
c. Ne
d. Cs
78. How many valence electrons does a neutral atom of Zinc have?
a. 2
b. 4
c. 8
d. 12
79. How many energy levels does an atom of beryllium have?
a. 1
b. 2
c. 3
d. 4

