31. What is the molality of a solution containing 96.0g of methanol (CH ₃ OH), in 3500g of water?
96.09 × $\frac{1001}{32.059} = 3.00001$ $\frac{3.00001}{3.500} = \frac{0.8560}{51} > .8600$
32. How many grams of ammonia (NH ₃) are dissolved in 1000ml of water to prepare a 0.42m solution?
(hint: remember your formula and labels) $0.42m = \frac{n}{1 \text{ kg}} n = 0.42 \text{ mol} 0.42 \text{ mol} \times \frac{17.039}{1 \text{ mol}} = \boxed{1.159 \text{ fg}}$
33. Record the equilibrium constant for the following equation. $aA + bB \rightarrow cC + dD$
Keg = [C] [D] [B] b
34. Using the equation from problem #33, determine the equilibrium constant for the following reaction and in which direction is the reaction most likely to progress. 2 AgNO ₃ + CuCl ₂ → 2 AgCl + Cu(NO ₃) ₂ AgNO ₃ = 0.64M CuCl ₂ = 1.20M AgCl = 0.42M Cu(NO ₃) ₂ = .98M
$2 \text{ AgNO}_3 + \text{CuCl}_2 \rightarrow 2 \text{ AgCl} + \text{Cu(NO}_3)_2$ AgCl = 0.42M Cu(NO ₃) ₂ = .98M AgCl = 0.42M Cu(NO ₃) ₂ = .98M AgCl = 0.42M Cu(NO ₃) ₂ = .98M
35. What is the new boiling point of a aqueous solution containing 0.59m potassium fluoride? Note the Kb for water is 0.512°C/m. AT = i Kb m KF i=2 Water (pure) boils @ 100°C 100 + 0.604 = 100.604 -> 101°C 100 + 0.604 = 100.604 -> 101°C
36. A solution contains 10.6 grant of ethanol?
16.00x 1mol = 0.499 mol CH30H 30.009 x 1mol = 0.499 mol CH30H 23.009 x 1mol = 0.499 mol CH30H Total moles = 1.50mol 0.499 = 0.332 CH30H CH30H
37. If a 3.00M solution was required how much of a 12.0M solution would be required to make 1.5L?
$M_1V_1 = M_2V_2$
38. What is the mass percent of a solution containing 45.0 g of potassium nitrate in 76.7 g of water?
45.09 x100 = 58.790