MOLECULAR SHAPES

When bonds form between atoms molecules are created. Depending on how many bonds exist a molecule will take on different shapes. The bonds between atoms generally contain two electrons. These electron pairs will repulse each other, therefore the bonds will be equally spread around the surface of the atom.

The Valence-Shell Electron Pair Repulsion theory (VSEPR) states that in a small molecule, the pairs of electrons are arranged as far apart from each other as possible. (*of course there are always exceptions) The VSEPR effect helps determine the **bond angle**, the geometric angle between two bonds. This arrangement of bonds creates the shape of a molecule. Although bonds appear flat when drawn on paper we have to remember that a molecule is actually 3-dimensional.

There are seven basic shapes – linear, trigonal planar, tetrahedral, pyramidal, bent, trigonal bipyramidal, and octahedral. When determining the shape of a molecule you must first draw the Lewis Dot Diagram for the molecule or ion. Next, count the total number of regions of high electron density (bonding and unshared electron pairs) around the central atom.

Rules for determining high electron density:

- Double and triple bonds count as ONE REGION OF HIGH ELECTRON DENSITY.
- 2. An unpaired electron counts as ONE REGION OF HIGH ELECTRON DENSITY.
- 3. For molecules or ions that have resonance structures, you may use any one of the resonance structures.

Third, identify the most stable arrangement of the regions of high electron density as ONE of the following:

- 1. **linear** molecules have bonds that form a straight line, the atoms are 180° apart. A molecule may be linear if it contains double or triple bonds that create a symmetry.
- For example: O_2 O=O (diatomic)

$$CO_2$$
 O=C=O

- 2. **trigonal planar** molecules form a flat triangle with the bond angle at 120°. Because the bond angle is greater than 90° the bonds may remain on the same plane.
- 3. **Tetrahedral** molecules have four equal bonds. All bond angles are 109.5°.
- For example: CH₄

- 4. **Pyramidal** molecules have a central atom that contains an unshared pair of electrons. The unshared pair applies a greater repulsion force than the other bonds resulting in a tetrahedral with out the top 4th bond. The bond angle is 107° between bonds.
- 5. **Bent** is found in molecules with 2 unshared pairs of electrons. These two unshaired pairs repulse the bonded pairs resulting in a bond angle of 105°.
- For example: water
- 6. **Trigonal bipyramidal** molecules are formed from a central atom with 5 bonds. The bonds will arrange in five directions, up, down and three pointing out from the middle.
- 7. **Octahedral** molecules formed with 6 bonds around a central atom. The bond arrangement will be: up, down and four pointing out from the middle.

Fourth, determine the positions of the atoms based on the types of electron pairs present (i.e., bonding pairs vs. unshared pairs). For trigonal bipyramidal and octahedral arrangements, there can sometimes be more than one possible arrangement of the bonding and unshared pairs:

Trigonal bipyramidal - place any unshared pairs in the plane of the triangle. Octahedral - if you have two unshared pairs, place them on opposite sides of the central atom.

Fifth, identify the molecular structure based on the positions of the ATOMS (NOT on the regions of high electron density).

Practice: Draw the Lewis Dot Diagram, illustrate and identify the molecular shape of the following molecules.

- 1. HF
- 2. BF₃
- 3. CCl₄

To determine molecular shapes based on orbitals (**hybrid orbitals**) we must think about how atoms affect each other as they come together. The electron's *normal* orbits may be changed. When bonds form some chemists believe that the orbitals mix to form hybrid orbitals. Hybrid orbitals contain properties of both original orbitals. (Text figure 8-11, pg 263) **Be able to illustrate the following diagrams.

Bond length is the distance between the nuclei of two bonded atoms. Bond length distance depends upon the repulsion of the nuclei . If you have larger nuclei the repulsion is larger. If you add more electrons to a bond (double or triple bonds) the electrons act to pull the nuclei together and shorten the bonds. This can be summarized in these trends:

- 1. As you move down a group the atoms form larger bonds.
- 2. Multiple bonds are shorter than single bonds.
- 3. The shorter the bond length the higher the energy.

Bond energy is the energy required to break a chemical bond and form neutral atoms, measured in kJ/mole.

POLARITY IN MOLECULES

Like polar and non-polar bonds, molecules can be polar and non-polar also. Polar molecules have a positive end and a negative end, also referred to as **dipoles**. Non-polar molecules do not have charged ends. The shape of a molecule and the polarity of its bonds together determine whether the molecule is polar or non-polar. (again we will refer to the δ + and δ -) The shape of large molecules are determined in part by their polarity.

Homework: Molecular Shapes 1-5. Draw the Lewis Dot Diagram, illustrate and indentify the molecular shape of the following, and then indicate if it is a polar or non-polar molecule. Lewis Dot Illustrate Shape Polar/Non-polar	Name:		Period:	Date:				
following, and then indicate if it is a polar or non-polar molecule. Lewis Dot Diagram		×.						
Lewis Dot Diagram 1. BFI ₂ 2. NH ₂ Cl 3. C ₂ H ₄ 4. CBr ₄		_		*	ular shape of the			
Diagram 1. BFI ₂ 2. NH ₂ Cl 3. C ₂ H ₄ 4. CBr ₄	following, and the							
1. BFI ₂ 2. NH ₂ Cl 3. C ₂ H ₄ 4. CBr ₄			Illustrate	Snape	1			
2. NH ₂ Cl 3. C ₂ H ₄ 4. CBr ₄		Diagram			polar			
3. C ₂ H ₄ 4. CBr ₄	1. BF1 ₂							
3. C ₂ H ₄ 4. CBr ₄								
3. C ₂ H ₄ 4. CBr ₄								
4. CBr ₄	2. NH ₂ Cl							
4. CBr ₄								
4. CBr ₄								
4. CBr ₄								
	$3. C_2H_4$							
		A Designation of the Control of the						
	4. CBr ₄							
		de la constante de la constant						
5. NH ₃	5. NH ₃							
					L			
6. Illustrate the hybrid orbitals for the sp ³ .	6. Illustra	te the hybrid orbita	als for the sp ³ .					
		·						
7. Which has longer bonds H ₂ O or CO ₂ ? Why?	7. Which	has longer bonds F	I_2O or CO_2 ? W	hy?				
8. In a polar bond, electrons are shared (equally/unequally) between two atoms.	Q In a na	lar hand alastrons	are chared (acre	ally/magnally) l	saturaan tura atama			
6. In a polar bond, electrons are shared (equally/unequally) between two atoms.	o. mapo	iai vona, electrons	are snared (equ	any/unequany) (octween two atoms.			
9. A molecule that is composed of only one kind of atom is a(n)	9. A mole	cule that is compo	sed of only one	kind of atom is a	a(n) .			
		_	-					
10. Compare the bonds in C ₂ H ₄ and C ₂ H ₂ , which bonds would require more energy to break?			H_4 and C_2H_2 , wh	nich bonds woul	d require more			
11. Why is HCl a polar molecule while Cl ₂ is a non-polar molecule?	11. Why is	HCl a polar molec	ule while Cl ₂ is	a non-polar mol	ecule?			
12. The of a large molecule helps determine its shape.	10 ms							

				le choice questi		
	13. The distance between the nuclei of					
	25			c. molecular radii		
b.	ionic radii		d.	bond length		
***************************************		onds result in pa	artial charg	es on the ends o	f a molecule, the molecule	
is referre						
	ionic comp			polar molecule		
b.	non-polar n	nolecule	d.	none of the abo	ve	
44000-40404-44404-4404-44		e following is the	he correct	ewis Dot Diagi	ram for hydrogen	
chloride?	H. Cl	b. H. C.	c. ĂĂ Ĉ	d.×H² Çı́ °		
a. b. c.	repulsive factorial repulsive f	forces between	shared and shared and adjacent n	unshared electrunshared electruclei		
17. bonds?	What is the	bond angle in a	molecule	whose central at	om has formed three	
	. 90°	b. 109.5°	c. 120°	d. 180°		
***************************************	Which of the orbitals?	e following is a	result of r	erging orbitals	from different sublevels to	
a.	resonance		c. isomer	sm		
b.	. hybrid orb	itals				
19.	In a triple bo	ond how many	electron pa	irs are shared?		
a.	- American	b. 2	c. 3	d. 4		
20.	In the hybrid	d orbital sp ³ wh	at is the be	nd angle?		
	. 90°	b. 109.5°	c. 120°	d. 180°		
21.	A molecule	of water has ho	w many u	shared electron	pairs?	
a.	. 1	b. 2	c. 3	d. 4		
22.	The repulsion	on of an unshare	ed pair of e	lectrons is	a shared pair of electrons.	
a.	more than	b. less than	c. equal t	d. not com	parable	
23.	Which type	of bond has the	highest be	nd energy?		
	single	b. double	c. triple	d. they are	equal	
24.	A polar mol	ecule is referred	d to as a:			
successful description of the second	dipole	b. hybrid	c. anion	d. cation		