THE PERIODIC TABLE

The periodic table was developed by **Dmitri Mendeleev**. Mendeleev arranged the elements by their increasing atomic masses. Although many elements had not been discovered yet Mendeleev had the fore thought to leave spaces for elements that seemed to be missing based on the expected properties of the space. **Henry Moseley** followed after Mendeleev and explained that the periodic table should be arranged in order by increasing atomic number. Mosely proposed the **Modern Periodic Law**, which states that the chemical and physical properties of elements are periodic functions of their atomic numbers.

The periodic table lists basic information about the elements, such as the name of the element, the element's symbol, its atomic number and its average atomic weight. Some tables give additional information like common ion states or common oxidation states.

Our current periodic table is divided into columns called **groups**, and rows called **periods**. Do you remember what a group has in common? Do you remember what a period tells you about the element? Groups all have the same number of valence electrons. Periods all have the same number of energy levels. There are additional names given to most groups that express characteristics about the group:

- Group IA is also known as **Alkali metals**. The metals of this group are soft metals the react vigorously with water.
- Group IIA = **Alkaline earth metals**. The metals of this group are also reactive but less than the alkali metals.
- Group B = **Transition elements**. The metals of this group have an incomplete filling of their energy levels.
- Sixth period = Lanthanoids. The metals of this group are similar to the transition elements, having incomplete filling of their energy levels.
- Seventh period = Actiniods. The metals of this group also have incomplete filling of their energy levels.
- Group VIIA = Halogens. Reactive non-metals.
- Group VIIIA = **Noble Gases**. The noble gases are inert gases, and generally do not react with other elements.

Modern periodic tables contain other useful information as well. Most tables have elements marked to show whether it is a metal, semi-metal or a non-metal, and markings to show what state the element is found in at room temperature.

- **Metals** 1. They have a characteristic luster or shine.
 - 2. They are generally good conductors of heat and electricity.
 - 3. They are solid at room temperature, except mercury.
 - 4. They are malleable and ductile.

Non-metals -1. They do not exhibit characteristics of metals.

- 2. Most are gases, except bromine.
- 3. When in their solid state most are hard and brittle.

Semi-metals or metalloids - 1. They have both metallic and non-metallic properties.

2. They are good semi-conductors; poor conductors at room temperature, but relatively good at higher temperatures.

Practice: Complete the following tasks using the periodic table provided.

- 1. Outline all the metals with a dark color (perhaps dark blue, green or purple)
- 2. Outline all the semi-metals in a different dark color.
- 3. Outline all the non-metals in a light color.
- 4. Color in the blocks that are solids, color lightly so that you do not obscure the information on the table. (using a light color is usually helpful)
- 5. Color in the blocks that are liquids, use a color much different than the one you used for the metals.
- 6. Color in the blocks that are gases, and once again please use a different color.
- 7. Create a legend at the top of your periodic table.

Periodic Table of the Elements

VIIIA) 	ש	4.003	9	Q N	20.18	18	Ar		68.85	36	7.7	7	83.80	54		ט	131.3	98	2		(222)		
			VIIA	თ	Ш	0	╫	5			35	מיב		79.90	53			တ	82	<u> </u>		(210)		
			VIA	8	0	<u> </u>	\dagger	U,	<u> </u>	\dashv	34 	000		9	52	0		o	84	700		(502)		
h	•		٨		Z	14.01	15	Δ		+	33	Ac		7	51	ב ע		0	 	ä		208.0		
			ΔV	ဖ	ပ	12.01	14	U,		+	32	900	_	-	20	2		+	28	<u>م</u>	207.0	ᅱ		
			HIA	2	മ	10.81	13	P	- 00	,	-	<u> </u>		+	0,4	2	44.0	\dashv	- i	—	707	\dashv		
			1	**********					9	200	ဂ္ဂ	Zn	85 38	30.00	8		112 4	1.2.1		OI	200	_		
									ā	200	64	CC	63.55		, 4 ,	Ad	107.9	202	·	Au		\dashv		
									-	28	2 ;	Z	58.69	9	04	70	106.4	78	2	<u>ゴ</u>	195.1			
									-VIIIB-	100	i (<u>ဝ</u>	58.93	15	7	S Y	102.9	77		<u>_</u>	192.2	100	¥	(266)
									l	26	1	T	55.85	44	1	コ Y	101.1	76	(S	190.2	108	Ľ Ľ	(265)
) !									VIB	25			54.94	43	}	ပ	(86)	75	ב	76	186.2	107	a C	(262)
•									VIB	24	(う	52.00	42		<u> </u>	95.94	74	141	>	183.8	106	Sa	(263)
									ΛB	23	1	>	50.94	41	1	2	92.91	73	F	<u></u>	180.9	105	D	(262)
						2			IVB	22	F		47.88	40	, ,	7	91.22	72	1	=	178.5	104	ř	(261)
						. T			\dashv	21	C		44.96	39	>		88.91	7.1	_		175.0	103	٢	(260)
		<u>8</u>	4	0	ם פ	+		2	4	50	(_	38	Ü		87.62	56	a			88	Ra	226.0
	I	1.008	က	-	941	=	2	2	23.00	<u></u>	7	-	39.10	37	ס	2	85.47	- 55	<u>u</u>	3	132.9	87	上	(223)

	Г							7			-			
	20	2		_	-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-	_					(020)	(607)
	00	20				000					てミ	3 = 1	(350)	(00.7)
	88	3	L	7	j	1673	2	00,	3	1	3	-	(257)	(40,4)
	67	5	_	CI)	164 9)	00	n n	Ł	U]	(252)	(-0-)
	99		-			162.5) : -	go)	4		;	(251)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	65		<u> </u>	9	}	158.9		25	5	ב	Ţ		(247)	,
	64	1	7	7	}	57.2		96	·	(こり	:	(247)	٦
1	20	1	ü			152.0 15		95	•	< < < < < < < < < < < < < < < < < < <			(243)	
50	70	1	3	こう		150.4		94		_			(244)	ļ
6.4	5		3		1	(145)	50	ກ ກ		2	2		237.0	Ţ
č	3	-	Z	3	777	7.44.	င်င်	32)	0000	738.0	4
o.)	_	7	·	4.40.0	D. O.	0	-		נח	5	201	231.0	,
28	,	(4		140 0		06	3	-	<u></u>	-	232.0	404.0	
<u>ہ</u>	-	(77	5	138.9		68	?	(<	7	-)	227 0	0.133	
													لــ	

Terms (III) A reviews min matter (minos and dono como a co-c				
Monthly Miller of the Control of the				
	».Ā	•		

Atomic radius decreases lonization energy increases Electronegativity increases

988	H 2.1				,	4								****	************			2 He
rease creas	3 Gi 1.0	8e 1.3											5 B 2.0	6 C 2,5	7 N 3.0	8 0 3.5	9 F 4.0	10 Ne
Z ≦ Ū	0.9	Mg 1.2					· ·						13 Ai 1.5	14 Si 1.8	15 P 2.1	16 S 2.5	17 Cl 3.0	18 Ar
3 2 2	19 K 0.8	20 Ca 1.0	21 Sc 1.3	22 Ti 1.5	23 V 1.6	24 Cr 1.5	25 Mn 1.5	26 Fe 1.8	27 Co	28 Ni 1.9	29 Ctr 1.9	30 Zn 1.6	31 Ga 1.6	32 Ge 1.8	33 As 20	34 Se	35 Br	36 Kr
G 0	37 Rb 0.8	36 Sr 1.0	39 Y 1.2	40 Zr 1.4	41 Nb 1.8	42 Ma 1.8	43 Tc 1.9	44 Ru 2.2	45 Rh 2.2	45 Pd 2.2	47 Ag 1.9	48 Cd 1.7	49 In	50 Sn 1.8	51 Sb 1.9	2.4 52 Te 2.1	2.8 53 1	S4 Xe
Atomic r lonization Electrone	55 Cs 0.7	56 Ba 0.9	Zi Lu	72 Hf 1.3	73 Ta 1.5	74 W 1.7	75 Re 1.9	76 Os 2.2	77 hr 2.2	76 Pt 2.2	79 Au 2.4	80 Hg 1.9	81 TI	852 Pb	53 8i 1,9	84 Po 2.0	2.5 85 At	86 Rn
At loni Ele	87 Fr 0.7	88 Ra 0.9	E Lr	104 Unq	105 Unp	106 Sg	107 Uns	108 Uno	109 Une	-		11	.	1.3	1.9	2.0	2.2	

Electronegativities of the Elements

	~				-100		-yaı	IVILIE	:S 01	tne	Lie	men	75				
H	1						_										r
2.1																	Не
Li	Be	1											T			,	-
1.0	1.5														Ne		
Na	Mg	1										2.0	2.5	3.0	3.5	4.0	-
0.9	1.2											Al	Si	P	S	CI	Ar
		-	T		Г =	T - :		,				1.5	1.8	2.1	2.5	3.0	-
K	Ca	Sc		V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
8.0	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb				
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8		Bi	Po	At	Rn
Fr	Ra	Ac			<u> </u>					2.7	1.3	1.0	1.8	1.9	2.0	2.2	
0.7	0.9	1 1															

Activity Series of the Elements

<u>Metals</u>	De	Nonmetals
Lithium	Decreasing	Fluorine
Potassium	ည် တ	Chlorine
Barium	Ē	Bromine
Strontium	20	lodine
Calcium	က သ	
Sodium	윷	
Magnesium	₹	
Aluminum	Y	
Manganese Zinc	D _e	
Chromium	Reactivity > Decreasing	
Iron	ລິ	
Cadmium	Ě	
Cobalt	ZD	
Nickel	Reactiv	
Tin	c∰	
Lead	₹	
Hydrogen	¥	
Antimony	Ď	
Arsenic	čr	
Bismuth	ຄື	
Copper	<u> </u>	
Mercury	ΙΩ 21	
Silver	ity ➤ Decreasing Reac	
Palladium	cti	
Platinum Gold	ş	
Gold	Ÿ	

General Rules of Solubility

- 1. All ammonium, potassium, and sodium compounds are soluble in water.
- 2. All acetates, chlorates, and nitrates are soluble in water.
- All chlorides are soluble in water except those of silver, mercurous mercury, and lead. (Lead chloride is slightly soluble in cold water and readily soluble in hot water.)
- All sulfates are soluble in water except those of barium and lead. Calcium, strontium, and silver sulfates are only slightly soluble in water.
- Carbonates, phosphates, oxides, silicates, sulfides, and sulfites are generally insoluble in water except those of ammonium, potassium, and sodium.
- All hydroxides are insoluble in water except those of ammonium, potassium, sodium, barium, calcium, and strontium. (Those of barium, calcium, and strontium are only slightly soluble in water.)

Name	
Home	work: Periodic Table
Fill in	the blanks for the following statements.
in the state of	The periodic table was originally invited by
2.	This periodic table was arranged in order of increasing
3.	Mosely rearranged the periodic table based on his
4.	Elements of Group IA are also called the
5.	All the elements of the 3 rd period have energy levels.
6.	All of the have an incomplete filing of their energy levels.
7.	The vertical columns of elements are called, and they all have the same number of
8.	are the most reactive non-metals.
9.	The letter in the middle of a periodic block represents the
10.	exhibit characteristics of both metals and non-metals.
*CERTIFICATION FRANCISCO	1. The chemical and physical properties of elements are functions of their atomic number. 2. The electrons in the outer most energy level. 3. A column of the periodic table containing elements with the same number of valence electrons. 4. Very reactive non-metals, found in Group 7A. 5. Reactive metals that are found in Group 2A. 6. These elements are inert gases. 7. A row of elements that are found in the note sheet and your vocabulary. a. noble gas b. period c. periodic law d. valence electron e. halogen f. alkaline earth metal g. group h alkali metal
	 7. A row of elements that contain the same number of energy levels. 8. These metals are soft and react vigorously with Water.

Choos	se the best answ	ver for the follo	wing questions	s.				
1.	Carbon is cons a. metal	sidered? b. metalloid	c. non-meta	al				
<u></u> 2.	The number list a. atomic mass b. atomic num	S	of a elemental b c. average ato d. number of					
3.	How many val	ence electrons	does magnesiu	m have?				
Material Participant (Conf.)	a. 1	b. 2	c. 4	d. 8				
4.	What family do a. noble gases b. transition el		long to? c. alkali metal d. halogens					
5.	Which of the fo	ollowing is a lic	uid at room te	mperature?				
	a. mercury	b. lead	c. copper	d. oxygen				
6.	Which of the fo		etalloid? c. calcium	d. helium				
7.	An element tha	t is hard and b	ittle at room te	emperature is most likely a:				
wasaning and production of the second	a. metal	b. metalloid	c. non-metal	imperature is most likely a.				
8.	Which of the for	ollowing scienti	ists is given cree	dit for designing the modern				
	a. Rutherford		c. Mendeleev					
	b. Mosely		d. Dalton					