 Calculate the empirical and molecular formula for the following compound. skip
38. Complete the following reaction:
$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$
39. How many atoms enter the reaction? 18 How many atoms leave the reaction?
40. How many molecules of carbon dioxide produced? 4
41. How many atoms of oxygen gas are consumed?10
For questions 42-45 complete the word problem by predicting the product, write the
balanced equation and identify the type of reaction.
 Ammonia when heated producesnitrogen gas and hydrogen gas
Type of reaction:decomp
Equation:
$2 \text{ NH}_3 \rightarrow \text{N}_2 \text{ (g)} + 3 \text{ H}_2 \text{ (g)}$
43. Carbon reacts with ferric oxide produces <u>carbon dioxide and iron</u>
Type of reaction:single replacement
Equation:
$3C + 2Fe_2O_3 \rightarrow 3CO_2 + 4Fe$
 Chlorine gas and potassium bromide react to form potassium chloride and bromine gas
Type of reaction: single replacement
Equation:
$Cl_2(g) + 2 KBr \rightarrow 2 KCl + Br_2(g)$
45. Silver nitrate and sodium chloride react to form silver chloride and sodium nitra
Type of reaction:double replacement
Equation:
$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
Find the mass in one mole of:
46. Hg ₂ (SO ₃) 481,25 g/mol
47. Al ₂ O ₃ 101.96 g/mol
48. Ca(MnO ₄) ₂ 277.96 g/mol
How many moles are in the following:
49. 98g of H ₂ SO ₄ 1.0 mol H ₂ SO ₄
50. 7g of N ₂ 0.2 mol N ₂
51. 0.051g of NH ₃ 0.0030 mol NH ₃

