Name:	Class:		Date:	ID: A
Chapte	r 3 Review			
Multiple Identify th	Choice he choice that best completes the statement or	· answei	rs the question.	
1	 Dalton incorporated the law of conservation a. atoms are indivisible. b. atoms of different elements have different c. matter is composed of atoms. d. atoms can not be destroyed in chemical 	rent pro	pperties.	ng that
2	 If each atom of element D has 3 mass units composed of one atom each of D and E has a. 2 mass units. b. 8 mass units. 	and ease c. d.	ch atom of element E has 5 mass un 15 mass units. 35 mass units.	nits, a molecule
3.	 In oxides of nitrogen, such as N₂O, NO, NO evidence supports the law of a. conservation of mass. b. multiple proportions. 	O ₂ , and c. d.	N ₂ O ₃ , atoms combine in small who definite composition. mass action.	le-number ratios. This
4.	 If 63.5 g of copper (Cu) combine with 16 g oxygen will be needed to combine with the a. 16 g b. 32 g 	same a	gen (O) to form the compound CuO mount of copper to form the compo 64 g 127 g	, how many grams of bund CuO ₂ ?
5.	According to the law of definite proportiona. the same mass.b. slightly different molecular structures.	c.	the same melting point.	
6.	According to the law of conservation of ma compound, the mass of the compound is a. equal to b. greater than	ss, whe the s c. d.	n sodium, hydrogen, and oxygen resum of the masses of the individual less than either greater than or less than	act to form a elements.
7.	 Which of the following is <i>not</i> part of Daltor a. Atoms cannot be divided, created, or de b. The number of protons in an atom is its c. In chemical reactions, atoms are combined. d. All matter is composed of extremely so 	estroyed s atomic ned, sep	d. number. parated, or rearranged.	
8.	Experiments with cathode rays led to the disa. proton. b. nucleus.	scovery c. d.	of the neutron. electron.	
9.	In Rutherford's experiments, alpha particlesa. passed through a tube containing gas.b. were used to bombard a cathode plate.	c. d.	collided with electrons. were used to bombard thin metal for	oil.

				ID. A
	10.	a. bounced back.	es c. d.	were absorbed by the foil. combined with the foil.
Omed debilier beine ausm	11.	a. atoms were mostly empty space.	l str c. d.	
	12.	Because a few alpha particles bounced back from a. striking electrons. b. indivisible. c. repelled by densely packed regions of position. d. magnetic.		
www.matatatatatatatatatatatatatatatatatatat	13.	a. nuclide.	as a c. d.	a proton, but with no electrical charge, is called a(n) electron. isotope.
——————————————————————————————————————	14.	 The nucleus of an atom has all of the following of a. is positively charged. b. is very dense. c. contains nearly all of the atom's mass. d. contains nearly all of the atom's volume. 	cha	racteristics except that it
	15.	a. nucleus	eq c. d.	ual to 1/2000 of the mass of a common hydrogen atom proton neutron
	16.	a the musleen faces	:. 1.	their energy levels. electron repulsion.
	17.	 An atom is electrically neutral because a. neutrons balance the protons and electrons. b. nuclear forces stabilize the charges. c. the numbers of protons and electrons are equ d. the numbers of protons and neutrons are equ 	ıal. al.	
	18.	Most of the volume of an atom is occupied by the a. nucleus. c b. nuclides. d	•	electrons. protons.
	19.	The charge of the electrons form a neutral atom b a. preventing compounds from forming. c. b. balances the charge on the nucleus. d		attracting electrons in other atoms. do not exist.
Milliani, morrisone	20.	The radius of an atom extends to the outer edge of a. nucleus. c. b. region occupied by the electrons. d.		e region occupied by the neutrons. positive charges.

Name:

Nam	e:			
***************************************	21.	Isotopes are atoms of the same element tha. principal chemical properties.b. masses.	at have c c. d.	numbers of protons.
Minfürelillindeplaiahassees	22.	 The atomic number of oxygen, 8, indicate a. protons in the nucleus of an oxygen a b. oxygen nuclides. c. neutrons outside the oxygen atom's nu d. energy levels in the oxygen atom's nu 	tom. ucleus.	ere are eight
MARION MA	23.	The total number of protons and neutronsa. atomic number.b. Avogadro number.	in the nu c. d.	mass number. average atomic mass.
New Address of the Section of the Se	24.	 As the mass number of an element's isotopa. decreases. increases. remains the same. doubles each time the mass number in 		
	25.	All atoms of the same element have the sa a. atomic mass. b. number of neutrons.	me c. d.	mass number. atomic number.
	26.	In determining the atomic mass of elementa. C-12 atom.b. C-14 atom.	ts, the sta c. d.	andard is the H-1 atom. O-16 atom.
	27.	The average atomic mass of an element is a. naturally occurring isotopes. b. two most abundant isotopes.	the avera c. d.	and the second s
	28.	An aluminum isotope consists of 13 protor a. 13. b. 14.	ns, 13 ele c. d.	ectrons, and 14 neutrons. Its mass number is 27. 40.
***************************************	29.	Chlorine has atomic number 17 and mass na. 17 protons, 17 electrons, and 18 neutrons. 35 protons, 35 electrons, and 17 neutrons. 17 protons, 17 electrons, and 52 neutrons. 18 protons, 18 electrons, and 17 neutrons.	ons. ons. ons.	5. It has
	30.	Carbon-14 (atomic number 6), the radioact a. 6 neutrons. b. 8 neutrons.	ive nucli c. d.	de used in dating fossils, has 10 neutrons. 14 neutrons.
	31.	Phosphorus-33 (atomic number 15) contain a. 33 protons. b. 18 neutrons.	e. d.	33 neutrons. 18 protons.

ID: A

Name:	****
-------	------

ID: A

32	The numb	er of atoms	in 1 mal	of oarbon	:
J. L.	THE HUILL	er or atoms	m i moi	or carpon	18

a. 6.022×10^{22} .

c. 5.022×10^{22} .

b. 6.022×10^{23} .

d. 5.022×10^{23} .

33. To determine the molar mass of an element, one must know the element's

a. Avogadro constant.

c. number of isotopes.

b. atomic number.

d. average atomic mass.

34. Molar mass

- a. is the mass in grams of one mole of a substance.
- b. is numerically equal to the average atomic mass of the element.
- c. Both (a) and (b)
- d. Neither (a) nor (b)

35. The mass of 1 mol of chromium (atomic mass 51.996 amu) is

a. 12 g

c. 51.996 g.

b. 198 g.

d. 6.02×10^{23} g.

Short Answer

36. Describe the law of definite proportions.

37. What is the law of conservation of mass?

38. What is the atomic number of an atom?

39. What is the mass number of an atom?

40. What is the relationship between isotopes, mass number, and neutrons?

.

41. Complete the following tables.

Element	Symbol	Atomic Number	Mass Number	No. of Protons	No. of Electrons	No. of Neutrons
Copper			65		29	
	Na	11				12
		12		12		12
Calcium 2- ion		20	40			
Boron 3+ ion		5		5		6
Isotopo	Sl-	1 1 44-				

Isotope	Symbol	Atomic Number	Mass Number	Number of Neutrons	
Carbon-13					
	²² ₁₀ Ne				
Lithium-8					

Problem

42. Complete the alpha decay of Gold-201.

.

43. Complete the beta decay of Silicon-30.

.

Name:	

44. Uranium is used in nuclear reactors and is a rare element on earth. Uranium has three common isotopes. If the abundance of Uranium-234 is 0.10%, the abundance of Uranium-235 is 0.61%, and the abundance of Uranium-238 is 99.28%, what is the average atomic mass of uranium?

.

45. If the half life of a particular isotope is 12 minutes and we have 40.0 g of it to begin, how much of the sample is left after 36 minutes?

.

46. A scientist started with 200.0 g of substance X, if he only had 12.5g left after 32 days what is the half-life?

.

47. If an isotope of turkium-300 has a half life of 1 hour how much of a 250.0g sample will be left after 5 hours?

.

48. Complete the following chart:

	IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
# of								
valence								
e-		 		<u> </u>				
# of e- lost/gai								
n								
Charge								