Avagadro's Number and The Mole

The amount of a substance which contains as many atoms (or other unit) as there are in 12 grams of carbon-12 is called a **mole**. (symbol mol) There are 6.022×10^{23} atoms of carbon in 12 grams of carbon-12. 6.022×10^{23} is referred to as **Avagadro's number.** (symbol N) Avagadro was an Italian chemist during the early 1800's. Avagadro's number can refer to any unit. When used one mole of an item will contain 6.022×10^{23} units of that item. Think of it like a measurement, like a dozen or a case.

For example: 1 mole = 6.022×10^{23} units a mole of donuts contains 6.022×10^{23} donuts a mole of H₂O contains 6.022×10^{23} molecules of H₂O a mole of copper contains 6.022×10^{23} atoms of copper a mole of nails contains 6.022×10^{23} nails

Because we can't weigh a single atom we "count" atoms (or molecules) by weighing large amounts of them on a balance. The **molar mass**, or formula mass, of a substance is its weight in grams of one mole. (expressed grams/mole) For a single element the atomic mass is its molar mass, the molar mass of carbon is 12 g/mol. Use the following directions to determine the molar (formula) mass of a compound.

Calculating Molar Mass

- 1. multiply atomic mass of each element by number of atoms of that element in the formula (shown by the subscript)
- 2. Find the sum of all the atomic masses this is formula mass (unit is a.m.u.)
- 3. Express the formula mass in grams (unit is g/mol). This is molar mass

For example: What is the molar mass of a H₂O molecule?

H = 1.01 amu x 2 = 2.02 g/mol O = 16.00 amu x 1 = 16.00 g/mol Molar Mass of $H_2O = 18.02$ g/mol

- What is the molar mass of $Al(NO_3)_3$?

Al = 26.98 amu x 1 = 26.98 g/mol

N = 14.01 amu x 3 = 42.09 g/mol

 $O = 16.00 \text{ amu } \times 9 = 144.00 \text{ g/mol}$

Molar Mass of $Al(NO_3)_3 = 213.07 \text{ g/mol}$

There are times when we can't mass the item we are measuring. Then we have to measure the molar volume. To do this we need to know that a mole of any gas occupies 22.4 liters at STP.

For example: 1 mole = 22.4 L = # of grams/mole

Find the number of liters in 12.00 grams of helium at STP. Each mole of helium weighs 4.00 grams. Use conversion factors to determine the answer:

$$12.00g \times \frac{1 \text{mole}}{4.00g} \times \frac{22.4 \text{ L}}{1 \text{ mole}} = 67.2 \text{ L}$$

Find the number of grams in 11.2 L of water vapor. 11.2L x 1 mole x 18.02g = 9.01 g of water vapor 22.4 L 1 mole

Practice: Complete the following molar mass and volume questions. (use conversion factors and unit cancellation)

- 1. grams in 2.5 moles of calcium
- 2. atoms in 200 L of fluorine atoms
- 3. grams in 4 moles of Al
- 4. grams and moles in 3.10×10^4 atoms of sulfur
- 5. grams in 6.0 L of oxygen gas
- 6. atoms in 35 grams of water
- 7. moles and grams in 3.011×10^{16} atoms of zinc
- 8. grams and moles in 6.022×10^{23} atoms of silicon
- 9. liters in 0.500 moles of chlorine gas
- 10. moles in 180 grams of calcium bicarbonate

Percent Composition

As John Dalton had predicted in his atomic theory of matter there is a definite ratio of elements in a compound. When compared to the formula mass the mass of each element can be expressed as a percentage. Use the following directions to help you determine the percent composition from a formula or from the masses of each element.

Calculating % Composition

- 1. calculate formula mass
- 2. divide the total atomic mass of each element by the formula mass and multiply by 100

For example: What is the percent composition of water?

From our previous work we know the formula mass of water is 18.02 grams.

Find the percent composition for CH₂O (first determine formula mass).

$$%C = 12.01g \div 30.03g \times 100 = 40\%$$

$$\% H(2) = 2.02g \div 30.03g \times 100 = 7\%$$

%
$$O = 16.00g \div 30.03g \times 100 = 53\%$$

Practice: Determine the percent composition for the following compounds.

- 1. HCl
 - %H =
 - % C1 =
- 2. AgNO₃
 - % Ag =
 - % N =
 - % O =
- 3. BaCrO₄
 - % Ba =
 - % Cr =
 - % O =
- 4. ZnSO₄
 - % Zn =
 - % S =
 - % O =
- 5. KClO₄
 - % K =
 - % C1 =
 - % O =
- $_{6}$ Fe(OH)₃
 - % Fe =
 - % O =
 - % H =

Na	me: Period: Date: omework: Avagadros Number and the Mole				
Homework: Avagadros Number and the Mole Show your work on a separate sheet of paper.					
De	termine the molar (formula) mass for the following. HNO ₃				
2.	Fe_2O_3				
3.	H_3PO_4				
4.	Ammonium nitrate				
5.	Rubidium sulfite				
	mplete the following molar mass and volume questions. (use conversion factors and unit cancellation) Molecules in 46.6 grams of sodium phosphite				
7.	Moles and grams in 12.04×10^{23} molecules of silver bromide				
8.	Moles in 20.45 grams of calcium sulfate				
9.	Moles in 250.2 grams of iron (III) oxide				
10.	Molecules in 25.9 grams of sulfur dioxide				
11.	Liters in 68.3 grams of hydrogen sulfide gas				
12.	Molecules in 48.0 liters of chlorine gas				
13.	Grams in 4.86 x 10 ¹⁹ molecules of mercurous sulfide				
14.	Moles in 50.4 grams of zince oxide				
15.	Liters in 60.0 grams of neon				
Calculate the percent composition of the following. 16. CH ₃ NH ₂ (methylamine)					
17.	C ₆ H ₆ (benzene)				

18. AgCl (silver chloride)

19. NaOH (sodium hydroxide)

20. C_3H_8 (propar	20. C_3H_8 (propane)				
21. CuSO ₄ (copper (II) sulfate)					
22. $C_2H_6O_2$ (etha	ndiol)				
23. CHCl ₃ (chlor	oform)				
24. Br ₃ HSi (tribromosilane)					
25. HNO ₃ (aq) (m	itric acid)				
Complete the following multiple choice questions. 26. Which of the following elements is the base for the scale used for expressing atomic mass? a. hydrogen-1 b. carbon-12 c. oxygen-16 d. helium-2 27. A mole of O ₂ gas contains 6.022 x 10 ²³ :					
a. atoms	b. molecules		d. grams		
28. How ma	any liters are in one	e mole of gas a	at STP?		
a. 11.2L	b. 22.4L	c. 44.6L	d. 33.3L		
	of the following con				
a. O ₂	b. H_2SO_3	c. CO ₂	d. KMnO ₄		
30. The mol	lar mass of a comp	ound depends	on:		
	dro's number	•			
b. its em	pirical formula				
	al of the masses of	the elements	in the compound		
	mber of atoms in a				